

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 1 of 23

Developer Documentation Date: 10.06.2020

Project: Enhancing Dafny Support

in Visual Studio Code

Developer Documentation

Marcel Hess
Thomas Kistler

Supervisors:
Thomas Corbat
Fabian Hauser

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 2 of 23

Developer Documentation Date: 10.06.2020

Table of Contents
1. Overview ... 4

2. Introductory Tutorials ... 5

2.1 VSCode Extensions .. 5

2.2 OmniSharp ... 5

3. Setup of the Development Environment .. 6

3.1 IDEs .. 6

 Automatic Code Formatting on Saving .. 6

3.2 Repositories ... 7

3.3 Client ... 7

 Packages Dependencies ... 7

 Updating Packages ... 7

 Starting the Client .. 7

 Selecting the Proper Output View .. 7

3.4 Server .. 8

 Microsoft Boogie .. 8

 Z3 .. 9

 Visual Studio Solution Overview .. 10

 Missing References .. 11

 Testing your project setup ... 11

3.5 Folder Structure ... 12

3.6 Download of the Language Server .. 13

 Correct Versioning .. 13

 Create Folder Alias ... 13

4. Debugging ... 14

4.1 Client Side .. 14

4.2 Server Side ... 14

 Using ReAttach ... 15

 Using Debug.Launch() .. 15

5. Relevant Code Information ... 16

5.1 Target Framework ... 16

5.2 Stream Redirection .. 16

6. Testing ... 17

6.1 Client Tests .. 17

6.2 Running Server Tests ... 17

 From Inside Visual Studio ... 17

 From Console ... 17

6.3 Creating Server Tests ... 18

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 3 of 23

Developer Documentation Date: 10.06.2020

6.4 Test Folder Structure ... 19

6.5 Concept of Writing Isolated Unit Tests .. 20

7. Continuous Integration(CI) .. 21

7.1 Local Testing With Docker ... 21

7.2 Updating Versions ... 22

7.3 Prebuild Stage .. 22

7.4 SonarScanner ... 22

7.5 Adjusting the Sonar Token .. 22

8. References .. 23

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 4 of 23

Developer Documentation Date: 10.06.2020

1. Overview
This document will help you getting started to work on the Visual Studio Code Dafny plugin and the
Dafny language server.

The project consists of two main parts as you can see in Figure 1. On the one hand, there is the Visual
Studio Code plugin, the so called “client”. It just contains a very basic level of logic and is mainly
responsible for displaying information to the user.

On the other hand, there is the Visual Studio solution, called the “server”. It delivers the required
information to the client using the language server protocol (LSP).

Figure 1 - Architecture

Although the plugin part is called “client” and the language server “server”, please note that both
instances are run on the user's local workstation.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 5 of 23

Developer Documentation Date: 10.06.2020

2. Introductory Tutorials
This chapter presents two rather simple, but extremely helpful tutorials to get familiar with the
problem domain. The first tutorial is about the creation of Visual Studio Code extensions. The second
one is from OmniSharp and shows how to use their implementation of the language server protocol.
Both together are an optimal preparation for this project.

2.1 VSCode Extensions
To understand how one develops a Visual Studio Code extension, we can recommend the tutorials
provided on the official site from Visual Studio Code [1]. The “Your First Extension” tutorial is very
simple but you will get familiar with all important files, classes and concepts for developing an
extension. Further on that site, you will find more advanced information like what kind of
programmatic language features are possible with the Visual Studio Code API.

2.2 OmniSharp
OmniSharp offers the Language Server Protocol implementation for C#. Instead of starting with our
project, you may first want to have a look at a more basic example of an OmniSharp implementation.
“Creating a language server using .NET“ is a very well-suited tutorial for this matter [2]. It gives a nice
introduction on how LSP requests are handled. Our implementation follows the same style used in
the tutorial. We think it is extraordinary helpful for your understanding.

If you need further help with LSP and OmniSharp, please visit their Slack community [3].
Questions asked in the slack channel are usually answered very quickly if kept concise.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 6 of 23

Developer Documentation Date: 10.06.2020

3. Setup of the Development Environment
This chapter will provide you with a detailed introduction how to set up all necessary repositories
and files, so that you can start to contribute to the project. The chapter is separated into two parts.
Firstly, we will have a look at the client side which is rather simple. To work on the client, one uses
Visual Studio Code itself as an IDE. Secondly, the server side, which is quite strenuous to set up, is
discussed. Some hints for CI your configuration are also given. Make sure to follow our instructions
carefully. The recommended IDE for C# is Visual Studio.

3.1 IDEs
You may use the following two IDEs for this project. To work on the client, you best use Visual Studio
Code, which is free and easy to install. Make sure to set the "PATH" Option during install, so you
easily launch it by typing "code ." into a console window. There are also options to add VSCode to the
context menu on windows, which is also a nice to have.

For developing the server, use Visual Studio 2019. The community edition is sufficient. Make sure to
have at least the following package installed:

Also ensure under "Single Components" that the following packages are installed:

• SDK for .NET Framework 4.6.1
• Package to compile into target version .NET 4.6.1.
• MSBuild

Nice to have and strongly recommended are also the following packages:

• NuGet Package Manager
• NuGet Target and Build Tasks
• Git Integration
• Code Analysis Tools

If you face an issue that some projects - namely the test projcets - need to be migrated, don't do so
but make sure the above packages are all installed.

As always with Visual Studio, we would recommend to work with ReSharper from JetBrains, too.

 Automatic Code Formatting on Saving
Once in a while, it may happen that a bracket accidentally gets a space too small or a line break too
large. To avoid such formatting errors and to have a consistent formatted code, we recommend
installing the following two plugins: Prettier[4] for VSCode and “Format document on Save”[5] for
Visual Studio. Prettier will only format code. For static code analyze we recommend SonarLint [6].

Prettier uses the formatting role in the Prettier configuration file [4]. Therefore it formats correctly
after installation out of the box. The visual Studio Plugin uses the project settings of visual studio
itself.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 7 of 23

Developer Documentation Date: 10.06.2020

3.2 Repositories
For a nice start, you best create a project folder and then clone the git repository for the client as
well for the server into it [7]. The server should then be in a subfolder dafny-language-server, and
the client in a subfolder dafny-vscode-plugin.

3.3 Client
This chapter describes the commissioning of the client development environment.

 Packages Dependencies
Before you are able to run the client, you have to run the command “npm install” within a console
inside the client folder manually. Of course one needs to have npm installed on his machine for that.
This installs all packages the client requires. Dependencies are defined in the package.json file.

 Updating Packages
From time to time it is appropriate to update packages to the latest version. We recommend to do
this especially for each further development of the project. This is especially important to close
security holes with the latest package versions. This is relatively easy to do. With the following
command the packages are updated: npm update [8]. Afterwards you may be asked to run an npm
audit fix to check the project for vulnerabilities [9].

 Starting the Client
After you have cloned our repositories, open the folder dafny-vscode-plugin in the client
repository with Visual Studio Code. To do so, you may just open a terminal and type “code .”. You
can also create a batch file for a quick access to the client in Visual Studio Code [10] or use the
context menu listing if that was installed.

Find and open a random .ts file, for example the main file src/extension.ts and press F5. This will
launch the plugin in a virtual test environment. It can be used like it would be installed and you can
set breakpoints and debug the code as well. Once your virtual environment is running you have to
open a .dfy file. Otherwise the plugin will not start since the plugin listens only to Dafny files.

You should then see a notification that the server could not be found. This is because we have not
built it yet, but the message ensures that the client is running properly so far. We will discuss the
server building in chapter 3.4 - Server.

 Selecting the Proper Output View
On the bottom of the screen, the console output is displayed. Often, a random window is shown.
However, you are interested in the console output of “Dafny Language Server”. You may have to
manually choose this output window as shown in the figure below. Think of that whenever you get
no console output.

Figure 2 - Set VSCode Console Output

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 8 of 23

Developer Documentation Date: 10.06.2020

3.4 Server
Setting up the language server is not as easy as just cloning the repository. Dafny has a bunch of
dependencies which you have to provide manually. This is rather inconvenient for developers and
the issue has been reported to our supervisors. Hopefully, the setup can be made easier in the
future. For now, please follow the upcoming steps carefully. Please note that the root directory in
the following steps is always the created “parent folder” that contains both cloned git repositories
and not the server subfolder.

 Microsoft Boogie
First of all, you need to provide binaries from Microsoft Boogie [11]. Dafny references these, thus you
need to provide them. They need to be inside a folder boogie/Binaries/ within the root folder of your
project.

To acquire Boogie, you can either build it yourself, or what we'd recommend, just use the included
Binaries within the original Dafny repository.

Currently, Dafny requires Version 2.4.2. Check yourself what the current required version is.

If you want to build them yourself, you have to clone the repository using the command
clone --branch v2.4.2 https://github.com/boogie-org/boogie.git
This should clone the correct Boogie version onto your system. Now you have to open the Solution
file from Boogie and then, you can build the project. This should create all binaries inside the folder
“boogie/Binaries”. Make sure to hit “Rebuild”, not just “Build”.

A problem that may occur is that one file, “Main.resx”, is marked as not trustworthy under
Windows. Visual Studio will give you a detailed error message. To resolve this, just locate the file and
allow access to it.

Figure 3 - Main.resx Permissions

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 9 of 23

Developer Documentation Date: 10.06.2020

The build should cover 21 projects and create about 40 files inside the binaries folder. Each project
should have an associated .dll and .pdb file, as well as Boogie.exe itself. After building, all you
need to keep is the content of the boogie/Binaries folder. Be aware that aside the .dll and .exe
files, you have to keep the associated .pdb files. These refer to system libraries, such as
System.Collections or such whenever a collection is used.

The other folders are technically no longer needed, but in case you want to rebuild Boogie, they may
come in handy.

To provide Boogie inside your CI environment, you can as well clone the repository and build it. Our
Docker file contained the following three self-explanatory lines for this purpose.

RUN git clone --branch ${BOOGIE_RELEASE} https://github.com/boogie-org/boogie.git &&\
 msbuild boogie/Source/Boogie.sln
ENV PATH=$PATH:/opt/boogie/Binaries

Whereas BOOGIE_RELEASE is currently set to

ARG BOOGIE_RELEASE=v2.4.2

If you encounter any problems during this process, Boogie has a short readme in their repository
which may help you [4].

 Z3
Z3.exe is a prover from Microsoft. Dafny - to be more precise: Boogie - is making use of this prover
for its purposes. Dafny expects Z3.exe to be inside the dafny/Binaries/ folder. However, this exe
file will not get built during the process. It is an external dependency and you have to provide the file
manually. Thus, make sure that Z3.exe is located inside dafny/Binaries.

While you could clone the Z3 repository [12] and build it yourself, the process is rather inconvenient
if you are not familiar with the suggested build tools like nmake. You can also simply download the
the release from the release subfolder in the repository [13]. Currently, Dafny requires Version 4.8.4.
Again check yourself which Version is suggested by Dafny.

Take note that you also have to provide Z3.exe inside your CI environment. For example, we had to
provide Z3 in our docker environment by downloading the file from the above repository and unzip it
with the following series of commands:

RUN wget --no-verbose ${Z3_RELEASE} &&\
 unzip z3*.zip &&\
 rm *.zip &&\
 mv z3* z3
ENV PATH=$PATH:/opt/z3

ARG Z3_RELEASE=https://github.com/Z3Prover/z3/releases/download/z3-4.8.4/z3-
4.8.4.d6df51951f4c-x64-ubuntu-14.04.zip

First, the z3 release is downloaded and then unzipped. Afterwards, the zip gets deleted and
everything starting with z3 (z3.exe is what we want here) is moved into the z3 directory. This
directory is then provided as an environment path variable.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 10 of 23

Developer Documentation Date: 10.06.2020

 Visual Studio Solution Overview
Once Boogie and z3 are installed, you are ready to open the solution “Dafny.sln”. It consists of two
major folders, Dafny and LanguageServer. Projects you find inside the Dafny folder correspond to the
existing Dafny solution [14]. Within the LanguageServer, you'll find our main project
DafnyLanguageServer. Last, there are Test folders, which contains unit and integration tests.

Figure 4 - Dafny Solution Overview

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 11 of 23

Developer Documentation Date: 10.06.2020

 Missing References
If you have warnings containing missing references in your solution, make sure the folder structure is
correct according to chapter 3.5 - Folder Structure. It is also possible to manually refer to the
corresponding Boogie dlls that you have built in the prior chapter. To clean up a missing reference,
right click on “References”, click “Browse” and then you can select the proper dlls, such as
Provers.SMTLib.dll for example. This is shown in Figure 5 below.

Figure 5 - Setting References

References are stored in each .csproj file. You may want to inspect these with a text editor if things
go wrong. Once you have all references correctly set, the solution should build. Nuget Packages will
be downloaded automatically if not available yet.

If Visual Studio complains about nUnit references, please refer to chapter 6.3 Creating Server Tests.
This is just a capitalization issue and should cause no trouble.

 Testing your project setup
If you want to perform an isolated test to check if your project setup is working correctly without
using the client side, you may just want to run all provided tests inside the solution. Since there are
integration tests using the complete infrastructure including Z3, they are a suitable indicator if your
setup is working properly.

You can also just try to start the server yourself. Simply hit F5 inside Visual Studio. Make sure the
language server is set as startup project. Maybe the launch causes already an exception, which for
example happens on missing references.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 12 of 23

Developer Documentation Date: 10.06.2020

3.5 Folder Structure
Make sure you provide the correct folder structure, so that you do not have to manually update any
references. Inside your root folder, you should have a folder “boogie”, which contains its binaries in
the subfolder “boogie/Binaries”. As well inside your root folder, you need to have a “dafny-
language-server” folder containing the Dafny project with its own “Source” and “Binaries” folder
as you can see in Figure 6 below.
The repository we are working on covers the necessary folder structure, but you may want to use
newer distributions from Boogie. If things go wrong, you can also use the installation instructions
from the “dafny-lang” [15] and “boogie” [11] repositories.

Figure 6 - Folder Structure

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 13 of 23

Developer Documentation Date: 10.06.2020

3.6 Download of the Language Server
The Visual Studio Code Marketplace contains only the client part when it is published.

When initializing the plugin the client automatically downloads the latest Dafny Language Server
version if it has not already been downloaded. The following two things must be considered: Correct
versioning to provide and adapt the local development environment for comfortable development.

 Correct Versioning
There are basically two types of version numbering. One for the plugin itself, which is located in the
client's package.json [16].

The server version, the relevant version for the download, is currently indicated in two parts. Please
always adapt all versions. One is in the server in the resource files
(DafnyLanguageServer/Ressources/VersionInformation.resx). Secondly, in the string resources
of the client for the server components (src/stringRessources/LanguageServer.ts). The latter
version is only a temporary solution.

Currently our changes have not yet been published on Github. Therefore we temporarily obtain the
language server as a ZIP file from our own server.

Once our changes have been integrated into the official project, the client's temporary
languageServerInstaller can be replaced by the original languageServerInstaller [17]. For the
interchangeability we have written a separate interface. Only minimal adjustments to the newly
given method names should be necessary.

 Create Folder Alias
To avoid having to republish and download every change during the development of the server, you
can create an alias to the binaries of the server.

The server is loaded into the out directory of the client (dafny-vscode-plugin/out/dafnyServer).
The contained folders "Binaries" and "Config" have to be replaced to appropriate folder
references (dafny-language-server/Binaries and dafny-language-server/Config).
Under Windows, a softlink can be created using the following console command. The sourcefolder
out/dafnyServer must be deleted first for the command to work:
mklink /J
 "X:\[…]\dafny-vscode-plugin\out\dafnyLanguageServer"
 "X:\[…]\dafny-language-server"

Please note that the corresponding directories only exist after a build of the Language Server on the
server side and on the client side only after a first plugin start.

Alternatively, the path to the executable of the language server can be adjusted in the client settings
[16]. This change should not be committed to git. Otherwise the server will no longer be downloaded
into the local plugin directory during production.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 14 of 23

Developer Documentation Date: 10.06.2020

4. Debugging
Debugging is of major importance for a quick and efficient development. Since we struggled with it at
first, we decided to show you in a detailed fashion how you can debug a language server project. The
client is hereby not the problem. The main difficulty is how to debug the server while the client is
running. As we will see, one can simply attach the debugger to the executing process. Alternative
methods that we tried are also presented, including the reasons why we do not recommend them.

4.1 Client Side
As mentioned in chapter 2.1 VSCode Extensions, your client will automatically be in debug mode
once you start it with F5. Client debugging should be quite straightforward.

4.2 Server Side
The client will launch the language server. Once it has started, you can attach the Visual Studio
debugger to the process that started the language server. Be aware that not Visual Studio Code is
starting the server, but a dedicated launch process. In a dotnet core project, one would write
“dotnet DafnyLanguageServer.dll” and thus, the executing process would be dotnet. If you are
in a Linux environment and you want to launch DafnyLanguageServer.exe, you probably write
“mono DafnyLanguageServer.exe”, and thus “mono” is the executing process. However, under a
Windows environment you simply start the executable with “DafnyLanguageServer.exe”, and the
executing process is then “DafnyLanguageServer”. How the server-process is started is defined
inside the file VSCodePlugin/src/server/dafnyLanguageClient.ts. For now, we assume that we
started DafnyLanguageServer.exe directly.

To be able to debug, your binaries must be up to date. You may want to always build the solution
prior to debugging. Once the language server is running, select Debug -> Attach and choose the
process as mentioned above and shown in Figure 7.

Figure 7 - Attach Debugger to a Process

Visual Studio will afterwards switch to debug mode and you can debug as usual.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 15 of 23

Developer Documentation Date: 10.06.2020

 Using ReAttach
You notice yourself that many clicks are necessary to attach the debugger every single time. Thus, we
recommend to use the Visual Studio Code extension ReAttch [18].
It allows you to attach the debugger using a single click, or rather a single keyboard shortcut. If your
client is not ready yet, it will even wait until the selected process has started. This is a very
convenient feature.

Figure 8 - ReAttach in Visual Studio

 Using Debug.Launch()
At first, we just used Debug.Launch(), a .NET Core system method. This will also start the debugger
but you will always be prompted if you want to launch a new Visual Studio instance. Afterwards, you
have to wait until the project and the debugger have loaded, which takes quite some time. Thus, this
method is strongly discouraged. The best way to debug is using ReAttach.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 16 of 23

Developer Documentation Date: 10.06.2020

5. Relevant Code Information
This chapter states two important facts about the code, which are not obvious. The first subchapter
is about why we have chosen to target .NET Framework instead .NET Core. The second subchapter is
about the redirection of the console output stream.

5.1 Target Framework
Please note that all projects are targeting .NET Framework. While it would be favorable to use .NET
Core for platform independence, not all used dependencies support the core framework. If you refer
a .NET Framework project from inside a .NET Core project, system libraries will be unavailable. Thus,
we decided to code in .NET Framework as well. The chosen version is .NET Framework 4.6.1. Note
that Dafny was updated to .NET Framework 4.8 recently. You may adapt this change.

5.2 Stream Redirection
If you take a look into the source code, you will notice that we redirect the output stream into a file.
This has two reasons. First and most importantly, deeper layers from Boogie sometimes print output.
We do not want side effects like these. Such console outputs can ruin the client-server connection
because those logs are not valid LSP formatted outputs. Secondly, the created log can be useful for
debugging in case that you develop a new feature that gets no debug information dumped by the
Visual Studio Code side.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 17 of 23

Developer Documentation Date: 10.06.2020

6. Testing
This chapter gives useful hints on how to run all provided tests.

6.1 Client Tests
There are no client tests anymore. All end-to-end system tests have been removed and are
completely replaced by our server side integration tests.

6.2 Running Server Tests
This chapter describes how to run server tests. Of interest is primarily the second subchapter, in
which we describe how you can easily run our tests in a console-only environment, namely with your
CI server.

 From Inside Visual Studio
As you most likely know, server tests can directly be run from within Visual Studio. You may use
Visual Studio's own test runner or the one from ReSharper, whichever is more in your favor.

Figure 9 - Running Tests From Inside Visual Studio

You can access intergration as well as unit tests this way.

 From Console
If you have to start the tests from a console, you can use the nUnit Console Test Runner. It is
available as a NuGet Package named “nunit.consolerunner”. Using NuGet, the installation is
simple. The corresponding command is

 nuget install nunit.consolerunner

Afterwards, just launch the nUnit runner and provide the test-project-dll as an argument. The test
dlls are as well located in dafny/Binaries/. A call could look like this:

 $./NUnit.ConsoleRunner.3.11.0/tools/nunit3-console.exe MyTest.dll

Note that when working with Linux, you can launch the same runner using Mono.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 18 of 23

Developer Documentation Date: 10.06.2020

6.3 Creating Server Tests
We decided to use nUnit as our testing framework. This way, we are independent of mstest, which is
not as simple to install on a Linux CI environment. With nUnit, we can run the tests easily from within
Visual Studio, but also from within the CI server.
However, when you create a new nUnit test project as shown in Figure 10, you may notice that these
target only .NET Core by default.

Figure 10 - NUnit Test Project Wizard

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 19 of 23

Developer Documentation Date: 10.06.2020

Just create the project as a .NET Core project. Locate the project inside the

dafny-language-server/Test/LanguageServerTest/[Integration|Unit]Tests

folder and follow the existing folder structure. Note that your Project must end on *Test.csproj to be
detected as a test project by the CI. After creating the nUnit project, close Visual Studio and navigate
to the just created project file. Open it with a text editor and change the targeted framework to
“net461”. This is a bit rigorous, but works totally fine. You may also want to adjust the output path of
the binaries. An example .csproj file is shown below. You may just use it as a template.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net461</TargetFramework>
 <OutputPath>../../../../Binaries/</OutputPath>
 <AppendTargetFrameworkToOutputPath>false</AppendTargetFrameworkToOutputPath>
 <AppendRuntimeIdentifierToOutputPath>false</AppendRuntimeIdentifierToOutputPath>
 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="nunit" Version="3.11.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.11.0" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.9.0" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include="..\..\..\..\Source\DafnyLanguageServer\DafnyLanguageServer.csproj" />
 <ProjectReference Include="..\..\TestCommons\TestCommons.csproj" />
 </ItemGroup>
</Project>
Sometimes, Visual Studio will complain that “NUnit” is not a valid package and that it cannot resolve
this reference. This should not cause any trouble, but if in doubt try to rename the reference to
“nUnit” with a lower n.

If you encounter a problem that the test runner is not executing test properly, you probably mixed
up target frameworks within your test project. Make sure they are all equal, and especially don't mix
.NET Core and .NET Framework as target frameworks.

6.4 Test Folder Structure
Our nUnit tests are placed within the dafny-language-server/Test/LanguageServerTest folder.
There is one subfolder for integration test project, one for unit tests, one for TestCommons and one
that contains Dafny-testfiles.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 20 of 23

Developer Documentation Date: 10.06.2020

6.5 Concept of Writing Isolated Unit Tests
Most of our classes are programmed against an interface. This means that you can easily create fake-
instances for testing. For example, to create a fake symbol table manager, you just have to
implement the proper interface:

 public class FakeSymbolManager : ISymbolTableManager
 {
 …
 }

Now you can use your fake and inject it into everything depending on it, namely a core-provider. A
complete example is shown below.

[Test]
public void ReservedWord()
{
 ISymbolTableManager manager = new FakeSymbolManager();
 var provider = new RenameProvider(manager);
 var result = provider.GetRenameChanges(…);

 Assert.IsTrue(provider.Outcome.Error, "error expected in rename-outcome");
}

If you cannot write simple unit tests for your code because of heavy dependencies, you can probably
refactor your code and use dependency injection. Once you use proper interfaces, it should be easy
to write a mock or a fake that allows writing isolated unit tests with ease.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 21 of 23

Developer Documentation Date: 10.06.2020

7. Continuous Integration(CI)
Our CI is already linked to GitLab. In case one develops further changes, it works out of the box. In
case you wish to reconfigure for your own GitLab repository, you will find helpful hints in this
chapter. The CI for the client as well for the server are independent. The concepts and tips described
below can be applied to both projects.

We do not have an continuous delivery (CD) for our plugin to the VSCode plugin marketplace. For a
detailed description of the used GitLab stages, please follow the main document.

7.1 Local Testing With Docker
Whenever you change something essential in your Dockerfile or the .gitlab-ci.yml, you
probably want to test it first on your local machine. To do so, you simply have to install Docker in
case you have not done yet.

In case you would like to test if a changed Dockerfile would result in a successfully built container,
you simply run this command in your root folder of the Dafny Language Server or Client root:
docker image build .

In case you would like to connect to the already built container of the ci process, you can download
the prepared docker container with the following docker run command.

Please note that you have to authenticate yourself the very first time. To do so, execute this the
following login command (username is your GitLab username, token is your generated access token):
docker login <GitLabURL>: -u <username> -p <token>

docker run
 -v /absolutePathToTheServerOnYourMachine:/mountedFolderInDockerContainer
 -ti --rm <GitLabURL>:latest /bin/bash

Whereas <GitLabURL> can be found out as follows: In GitLab go to the menu: Package - Container
Registry. There is the URL to your built Docker image.
E.g.: gitlab.dev.ifs.hsr.ch:45023/dafny-ba/dafny-language-server/dafny-language-server-build

Figure 11 - Docker Container Registry in GitLab

Please note that the docker container does not contain any code form the git repository since this
gets mounted on every CI process. To mount your project source code into the docker container, you
have to add the -v option.

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 22 of 23

Developer Documentation Date: 10.06.2020

7.2 Updating Versions
The Docker image includes several third party dependencies like Z3 for the Dafny Language Server
and Node for the client. Both projects contain an individual Sonar scanner. You can find them in the
Dockerfile file. They are listed at the very beginning of the file as ARGs as shown in the following
code snipped. The versions are clearly recognizable and easy to change.

ARG NODE_VERSION=10.16.3
ARG Z3_RELEASE=https://github.com/Z3Prover/z3/releases/download/z3-4.8.4/z3-
4.8.4.d6df51951f4c-x64-ubuntu-14.04.zip
ARG GO_RELEASE=go1.10.3.linux-amd64.tar.gz
ARG SonarScanner_RELEASE=3.0.3.778

Please note that when the Dockerfile file changes, the next CI pipeline will take longer since the
prebuild stage for building the docker container will be triggered again.

7.3 Prebuild Stage
As mentioned in the previous chapter, the prebuild stage runs every time the Dockerfile file is
changed. The same applies whenever the yaml configuration file is edited. This is defined by the
changes tag in the following snippet from .gitlab-ci.yml:

build_image:
 stage: prebuild
 image: docker:latest
 only:
 refs:
 - master
 changes:
 - Dockerfile.build
 - .gitlab-ci.yml

As you can notice, there is also a refs tag in the only section. It means that the docker image gets
only built when the changes happen on the master branch. If you would like to change this behavior,
you have to update the .gitlab-ci.yml file.

7.4 SonarScanner
Different types of sonar scanners are required for the Server and the Cient. The reason for this is
discussed in our main document. The scanner for TypeScript in the client can be run through
independently as the last CI phase. Please note that this is not possible for the server. The server
needs a Sonar scanner for MSBuild This will override the actual build process of msbuild. Accordingly,
the analysis must not be outsourced to an independent CI process, as otherwise the necessary
information cannot be collected by the scanner.

7.5 Adjusting the Sonar Token
If you would like to link the repository to another SonarCloud project for code metrics, you have to
change the SONAR_TOKEN in GitLab. To do so go to Settings > CI/CD and expand “Variables”.
Now you can add or change the environment variable as shown in Figure 12 below. To generate a
new token, please follow the SonarCloud user guide [19].
The client and the server needs both a own, separated SonarCloud project.

Figure 12 - Add SONAR_TOKEN as Environment Variable

Bachelor thesis spring term 2020
Project: Enhancing Dafny Support in Visual Studio Code

Page 23 of 23

Developer Documentation Date: 10.06.2020

8. References
[1] “Extension API.” https://code.visualstudio.com/api/index (accessed Oct. 14, 2019).
[2] “Martin Björkström - Creating a language server using .NET.”
http://martinbjorkstrom.com/posts/2018-11-29-creating-a-language-server (accessed Oct. 14, 2019).
[3] “OmniSharp community on Slack.” https://omnisharp.herokuapp.com/ (accessed Oct. 14,
2019).
[4] “Prettier - Code formatter - Visual Studio Marketplace.”
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode (accessed May 13,
2020).
[5] “Format document on Save - Visual Studio Marketplace.”
https://marketplace.visualstudio.com/items?itemName=mynkow.FormatdocumentonSave (accessed
May 13, 2020).
[6] “SonarLint - Visual Studio Marketplace.”
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarlint-vscode (accessed
May 28, 2020).
[7] “Dafny SA / Dafny_Server_Redesign,” GitLab. https://gitlab.dev.ifs.hsr.ch/dafny-sa/dafny-
server-redesign (accessed Dec. 11, 2019).
[8] “npm-update | npm Documentation.” https://docs.npmjs.com/cli-commands/update.html
(accessed May 13, 2020).
[9] “npm-audit | npm Documentation.” https://docs.npmjs.com/cli/audit (accessed May 13,
2020).
[10] “launch_VScode.bat,” GitLab. https://gitlab.dev.ifs.hsr.ch/dafny-sa/dafny-server-
redesign/blob/master/VSCodePlugin/_launch_VScode.bat (accessed Dec. 11, 2019).
[11] “boogie-org/boogie,” Oct. 20, 2019. https://github.com/boogie-org/boogie (accessed Oct.
22, 2019).
[12] “Z3Prover/z3,” Dec. 11, 2019. https://github.com/Z3Prover/z3 (accessed Dec. 11, 2019).
[13] “Z3Prover Releases,” GitHub. https://github.com/Z3Prover/z3 (accessed Dec. 11, 2019).
[14] “dafny-lang/dafny,” Oct. 11, 2019. https://github.com/dafny-lang/dafny (accessed Oct. 14,
2019).
[15] “dafny-lang installation,” GitHub. https://github.com/dafny-lang/dafny/wiki/INSTALL
(accessed Oct. 28, 2019).
[16] “package.json · master · Dafny BA / Dafny VSCode Plugin,” GitLab.
https://gitlab.dev.ifs.hsr.ch/dafny-ba/dafny-vscode-plugin/-/blob/master/package.json (accessed
May 26, 2020).
[17] “Dafny VSCode Plugin / dafnyLanguageServerStartup,” GitLab.
https://gitlab.dev.ifs.hsr.ch/dafny-ba/dafny-vscode-plugin/-
/tree/master/src/dafnyLanguageServerStartup (accessed May 26, 2020).
[18] “ReAttach - Visual Studio Marketplace.”
https://marketplace.visualstudio.com/items?itemName=ErlandR.ReAttach (accessed Oct. 22, 2019).
[19] “User Token | SonarCloud Docs.” https://sonarcloud.io/documentation/user-guide/user-
token/ (accessed Dec. 11, 2019).

